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Apomixis is a natural form of asexual reproduction through

seeds that leads to viable offspring genetically identical to the

mother plant. New evidence from sexual model species

indicates that the regulation of female gametogenesis and seed

formation is also directed by epigenetic mechanisms that are

crucial to control events that distinguish sexuality from

apomixis, with important implications for our understanding of

the evolutionary forces that shape structural variation and

diversity in plant reproduction.
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Introduction
Although originally defined to include all known forms of
vegetative propagation [1], apomixis has been restricted
to name a series of inherited developmental mechanisms
that give rise to clonal seeds by circumventing meiotically
derived chromosome reduction and fertilization of the
egg cell in the ovule. In sexual flowering plants, a single
generative cell (a female archesporium or a megaspore
mother cell) undergoes meiosis to produce four chromo-
somally reduced cells (the megaspores). In the majority of
sexual species, a single functional megaspore gives rise to
the female gametophyte [2,3]. After significant cellular
enlargement, the nucleus of the functional megaspore
usually undergoes three rounds of mitosis before giving
rise to a gametophyte composed of seven cells: two
companion synergids, the egg cell, a binucleated central
cell and three antipodals (Figure 1). Double fertilization
of both the egg and central cell is necessary to trigger
embryogenesis and endosperm development, respect-
ively. By contrast, apomictic plants can form embryos
directly from a somatic cell in the unfertilized
ovule (adventitious embryony) or from chromosomally
unreduced female gametophytes in which the egg cell

develops autonomously into an embryo, by parthenogen-
esis (gametophytic apomixis). In the latter case, the
unreduced female gametophyte can be formed from an
aberrant meiotic cycle that prevents reduction and recom-
bination (diplospory) or from direct differentiation of
somatic cells in the ovule (apospory). In most cases,
the formation of the endosperm is still dependent on
fertilization of the central cell (pseudogamy), although
rare cases of autonomous development of the endosperm
have been also reported [4].

The introduction of apomixis into sexual crops has been
perceived as a revolutionary technology that could allow
the perpetual self-production of improved hybrids, and
the genetic fixation of any desired heterozygous geno-
type. Apomixis was initially investigated by plant
embryologists that characterized the cytological basis
of apomictic reproduction in a wide group of species,
describing its structural variants and prevalent develop-
mental pathways [4,5]. Their efforts lead those of a few
visionary breeders that attempted its transfer by inter-
specific hybridization between important sexually
reproducing crops (maize, rice, pearl millet) and some
of their apomictic wild relatives (Tripsacum dactyloides,
Elymus rectisetus, and Pennisteum squamulatum, respect-
ively [6]. Although the strategy proved unsuccessful
from an applied perspective, resulting interspecific
hybrids presently represent a unique resource for un-
derstanding the genetic components that control apo-
mixis. Over the past two decades, research has focused
on studying the genetic basis and molecular mechanisms
that regulate apomictic reproduction through either the
elucidation of the genetic control of reproductive
methods in natural apomicts in comparison to their
sexual counterparts, or through the identification of
gene function in sexual model species as a means to
elucidate the developmental mechanisms that relate to
components of apomixis, such as the formation of unre-
duced female gametes, or the autonomous development
of the embryo or endosperm [7,8].

Recent results in Arabidopsis and maize have provided new
evidence indicating that genetic basis of female gameto-
genesis and seed formation are directed by epigenetic
mechanisms that are crucial to control events that dis-
tinguish sexual from apomictic development. The discov-
ery of these epigenetic components is transforming our
current view of the structural variation and diversity that
prevails at key steps of plant female gametogenesis, with
profound implications for understanding the evolutionary
trends that shape innovations in reproductive development
and adaptation.
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Genetic control of apomixis
Apomixis is genetically controlled, but the basis of its
inheritance remains often contradictory and elusive [6].
Genetic analysis is complicated by the absence of sexually
functional female gametes; as a consequence, apomictic
genotypes can only be used as male parents and cannot be
self-fertilized to generate segregating populations.
Whereas the inheritance of adventitious embryony has

not been investigated, segregating populations in several
apomictic grasses that retain a variable frequency of
residual sexuality show that the inheritance of unreduced
female gametophyte formation (through either diplospory
or apospory) is simple. In most species under study, the
basic components of apomixis can be explained by one
or two dominant loci that control unreduced gamete
formation and parthenogenesis, respectively; however,
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Sexual and apomictic development in flowering plants. During sexual development, a single cell undergoes meiosis to produce a tetrad of
chromosomally reduced cells (the megaspores); in most cases a single functional megaspore gives rise to the female gametophyte composed of two
synergids (Sy; orange), the egg cell (EC; blue), a binucleated central cell (CC; pink) and three antipodals (brown). By contrast, apomictic plants can
form embryos directly from a somatic cell in the developing ovule (nucellar embryos, NEmb; adventitious embryony) or from chromosomally unreduced
female gametophytes in which the egg cell develops autonomously into an embryo, by parthenogenesis (PEmb; gametophytic apomixis). In the latter
case, the unreduced female gametophyte can be formed from an aberrant meiotic cycle that prevents reduction and recombination (diplospory) or
from direct differentiation of somatic cells in the ovule (apospory). Additional legend: Tetrad, tetrad of haploid nuclei; 2NFG, 2-nuclear unreduced
female gametophyte; AI, aposporous initial cell.
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polyploidy, segregation distortion [9,10], suppressed
recombination [6], epistatic interactions [6], naturally
active modifiers [8], and environmental effects [4], com-
plicate their genetic analysis. To this date, no genes
associated with these loci have been demonstrated to
control components of natural apomixis. In Hieracium
praeltum, a member of the subgenus Pilosella, deletion
analysis showed that aposporous apomixis is controlled
by the LOSS OF APOMEIOSIS (LOA) and LOSS OF
PARTHENOGENESIS (LOP) loci. Whereas LOA is
required for aposporous cell differentiation and suppres-
sion of all sexually derived megaspores, the gametophytic
activity of LOP is necessary for autonomous development
of embryo and endosperm [11,12!]. Deletion of LOA or
LOP results in reversion to sexuality, indicating that apo-
mixis is imposed over a default sexual pathway that is
interrupted by any of these unrelated loci. Intriguingly,
LOA function requires the initiation of megaspore for-
mation in the early ovule [12!], suggesting that the speci-
fication of sporophytic aposporous initial cells is dependent
on the initiation of sexual development.

Current efforts have narrowed down genomic regions
harboring presumed genes involved in the initiation of
apomixis to a few hundred Kb [6,13]; a few additional
approaches have focused on attempting to identify can-
didate genes on the basis of differential gene expression
between sexual and apomictic genotypes [6,13,14,15!,16].
In Taraxacum for example, refinement of the genetic
linkage map showed a bias towards apomictic plants
among recombinants between the two most closely
linked molecular markers to the DIPLOSPOROUS
(DIP) locus, suggesting a possible duplication of a pre-
sumed DIP gene [17]. In Pennisetum sp., although intro-
gression of the Apospory-Specific Genomic Region
(ASGR)-carrier chromosome of P. squamulatum into
sexual genotypes of P. glaucum (pearl millet) proved
efficient to identify transcripts derived from the chromo-
some conferring apomixis [18], none were specific to
apomixis. The hemizygous chromosomal region contain-
ing LOA in Hieracium sp. is structurally reminiscent of the
hemizygous ASGR region in Pennisetum sp., suggesting a
convergent evolution that might be necessary for function
and maintenance of the trait [15!]. Whereas the vast
majority of apomictic genotypes are polyploid, the natural
occurrence of diploid populations that retain apomictic
reproduction, and the recovery of diploid individuals in
several apomictic species, indicates that polyploidy is not
an obligatory requirement for functional apomixis [4,19].
In the case of sexual diploid Erigeron strigosus, the absence
of apomictic development in diploids is supported by
evidence suggesting univalent inheritance of the locus
bearing diplospory, and recessive-lethal gametophytic
selection against the locus controlling parthenogenesis
[10]. Recent evidence indicates that discrete genomic
regions sufficient for the inheritance of apomixis in the
grasses are largely asyntenic, highly heterochromatic,

recombinationally suppressed, and rich in long terminal
repeat transposable elements [20].

Apomixis and the epigenetic regulation of
sexual development
The initiation of apomixis invariably occurs during early
ovule ontogeny; sexual and apomictic development can
coexist within the same ovule, or within different ovules of
a same individual, suggesting that apomixis could have
originated as a modified form of sexual reproduction that
has undergone deregulation of key developmental steps
during gametogenesis [8]. Because mechanisms such as
diplospory are directly dependent on the abnormal division
of a meiotic precursor, mutations affecting meiosis are
particularly interesting for understanding crucial aspects
of apomixis [2]. The combination of meiotic mutants that
can generate non-reduced female gametophytes with a
haploid inducer resulted in the formation of clonal seeds, a
non-recurrent form of synthetic apomixis [21].

While the function of meiotic genes in natural forms of
apomixis requires further investigation, recent findings
indicate that small RNA (sRNA)-dependent epigenetic
mechanisms play an essential role in reproductive cell
specification, a discovery with key implications for our
understanding of how the gametophytic lineage is estab-
lished during both sexual and apomictic reproduction. In
Arabidopsis, dominant mutations in ARGONAUTE9 (AGO9)
lead to aposporous-like phenotypes by which somatic
sporophytic cells give rise to a female gametophyte without
undergoing meiosis [22!!]. Additional mutations in genes
of the Arabidopsis RNA-dependent DNA Methylation
(RdDM) pathway result in equivalent defects, suggesting
that silencing of heterochromatic repetitive regions is
crucial to distinguish sexual from apomictic development
[22!!]. Similar epigenetic effects were discovered in maize,
where mutations in ARGONAUTE104 (AGO104) also give
rise to functional unreduced gametes [23!!], and mutant
phenotypes for DNA methyltransferases DMT102 and
DMT103 (closely related to Arabidopsis CMT3 and
DRM2, respectively) are also reminiscent of apomixis
[24!], supporting an essential role for RdDM mechanisms
in germ cell specification. Consistent with methylation
being involved in reproductive fate and environmental
response, significant changes in genomic methylation pat-
terns occur during the formation of triploid diplosporous
dandelions produced from diploid sexual mother fertilized
by polyploid pollen donors [25,26]. The importance of this
type of RNAi-dependent pathways has been also advanced
as an important factor in the divergence of flowering plants
from Gymnosperms [27,28!!].

AGO9 preferentially interacts with 24-nt sRNAs derived
from TEs mainly belonging to ancient families of retro-
transposons, and its function is necessary for silencing
TEs in the female gametes [22!!], a mechanism reminis-
cent of PIWI-dependent pathways in animals [29,30], and
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perhaps RNA-dependent genome rearrangements in cili-
ates [31!,32]. The majority of targeted TEs are located in
pericentromeric regions, suggesting a link between ovule
reproductive fate and silencing of heterochromatin [33!].
Interestingly, global expression profiling data indicates
that AGO104 strongly influences the transcription of
centromeric repeats [23!!]. The action of an AGO9-de-
pendent pathway has been suggested to represent a
defense mechanism against potential transpositionally
induced damage during meiosis or female gametogenesis,
a mechanism that could ensure the maintenance of gen-
ome integrity during the sporophyte-to-gametophyte
transition in the ovule [34].

Apomixis in a canalized field of epigenetic
possibilities
At least 400 extant genera, including multiple species of
Asteraceae, Roseaceae and Poaceae, contain genotypes or
entire plant populations that reproduce by apomixis
[5], suggesting that asexual reproduction through seeds
may have arisen multiple times during plant evolution,
perhaps through convergent developmental mechanisms.
A classic hypothesis suggests that apomixis could result
from the hybridization-derived confrontation of divergent
alleles that cause a temporal deregulation of cell speci-
fication and fate during early ovule development [35].

While hybridization and polyploidy are strongly corre-
lated with the trait [36,37,38], it is not clear if they are a
cause or a consequence of the evolution of asexual repro-
duction. Recent evidence suggests that apomixis could
derive from hybridization, with polyploidy occurring as a
possible stabilizing factor providing an evolutionary
advantage, either by alleviating certain constraints such
as self-incompatibility [39], or by masking the effects of
deleterious mutations [10]. In Boechera, diploid apomictic
genotypes show high levels of heterozygosity that are
likely to result from the combination of distinct genomes,
suggesting that they are of hybrid origin, and that geno-
mic hybridization might allow for developmental hetero-
chronicity in the ovule [40!], and for the transition from
sexuality to gametophytic apomixis [41!!]. Interspecific
hybridization and allopolyploidy have been advanced as a
source of ‘‘genomic shocks’’ that may result in phenotypic
alterations through new genetic or epigenetic interactions
derived from the activity of divergent genomes or dosage
changes in factors regulating development [42]. In Ara-
bidopsis thaliana, the genomic comparison of phylogen-
etically distinct ecotypes shows that large genetic
[43,44,45] and epigenetic sources of intraspecific variation
[46!!,47!!] can have an impact not only on heterosis
[48,49], but also on specific types of genetic and epige-
netic incompatibilities [50!!,51!!,52!].
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Female gametogenesis in a canalized field of epigenetic possibilities. While sexual reproduction appears strongly canalized in the Angiosperms,
natural sources of genetic variation such as hybridization and polyploidy, interacting with environmental factors, could modulate the reproductive
outcome by changing the fate of female gametic precursor cells (yellow marble). The shape and slope that defines the developmental pathway
followed by a female gametic precursor would depend on the strength and interactions imposed by natural sources of genetic variation. The
combination of such interactions might explain the developmental versatility that gave rise to the female gametophytic variants exhibited by flowering
plants. Developmental variants leading to the formation of unreduced female gametes could depend on a reproductive source of cryptic genetic
variation. Apomixis could represent a canalized alternative in a set of variants of developmental modifications to a general sexual reproductive pathway
that includes other structural forms of female gametogenesis such as bispory, tetraspory and polyembryony.
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Conrad Waddigton suggested that robustness could
stabilize phenotypic variability through ‘‘canalization’’,
the natural tendency of a trait to resist mutation or
environmental modifications [53]. While sexual repro-
duction appears strongly canalized in the Angiosperms,
could natural sources of genetic variation explain the
developmental versatility that gave rise to the female
gametophytic variants exhibited by flowering plants? In
analogy to the role of PIWI-dependent pathways in
animals [29,30,54!], sequence recognition involving
sRNAs in divergent genotypes could result in epige-
netic defects that deregulate female meiosis and cell
specification in the ovule. Canalization of sexual
development could depend on compatible recognition
between sRNAs and their targets; transcriptionally
active elements (repetitive elements, genes, or micro-
RNAs, for example) would not be targeted by sRNAs
produced by divergent parental genomes, as sequence
complementarity would tend to diverge in recently
formed hybrids. Following this hypothesis, develop-
mental aberrations leading to the formation of unre-
duced female gametes could depend on a reproductive
source of cryptic genetic variation, a form of standing
genetic variation that does not contribute to the normal
range of a phenotype, but that contributes to pheno-
typic modifications after the occurrence of a genetic
(hybridization and ploidy, for example) or environmen-
tal perturbation [55,56]. Apomixis could represent a
canalized alternative in a set of variants of develop-
mental modifications to a general sexual reproductive
pathway that includes other structural forms of female
gametogenesis such as bispory, tetraspory and polyem-
bryony ([3]; Figure 2). In coming years, the exploration
of the potential for natural epigenetic variation to
modify gametogenesis will provide new insights into
the mechanisms of reproductive innovation and evol-
ution that prevail in flowering plants, a requirement that
precedes the possibility of harnessing apomixis for the
benefit of sustainable agriculture.
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